Esp32 慣性元件

ESP32慣性元件

Arduino程式碼

// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using DMP (MotionApps v6.12)
// 6/21/2012 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//      2019-07-10 - Uses the new version of the DMP Firmware V6.12
//                 - Note: I believe the Teapot demo is broken with this versin as
//                 - the fifo buffer structure has changed

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps_V6_12.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high

//#define OUTPUT_READABLE_QUATERNION
//#define OUTPUT_READABLE_EULER
//#define OUTPUT_READABLE_YAWPITCHROLL
//#define OUTPUT_READABLE_REALACCEL
//#define OUTPUT_READABLE_WORLDACCEL
#define OUTPUT_TEAPOT

#define INTERRUPT_PIN 0  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 2 // (Arduino is 13, Teensy is 11, Teensy++ is 6, ESP32 is 2)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 gy;         // [x, y, z]            gyro sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0x00, 0x00, '\r', '\n' };

// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
  mpuInterrupt = true;
}

// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

void setup() {
  // join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
  Wire.begin();
  Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
  Fastwire::setup(400, true);
#endif

  // initialize serial communication
  // (115200 chosen because it is required for Teapot Demo output, but it's
  // really up to you depending on your project)
  Serial.begin(115200);
  while (!Serial); // wait for Leonardo enumeration, others continue immediately

  // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3V or Arduino
  // Pro Mini running at 3.3V, cannot handle this baud rate reliably due to
  // the baud timing being too misaligned with processor ticks. You must use
  // 38400 or slower in these cases, or use some kind of external separate
  // crystal solution for the UART timer.

  // initialize device
  Serial.println(F("Initializing I2C devices..."));
  mpu.initialize();
  pinMode(INTERRUPT_PIN, INPUT);

  // verify connection
  Serial.println(F("Testing device connections..."));
  Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

  // wait for ready
  Serial.println(F("\nSend any character to begin DMP programming and demo: "));
  while (Serial.available() && Serial.read()); // empty buffer
  while (!Serial.available());                 // wait for data
  while (Serial.available() && Serial.read()); // empty buffer again

  // load and configure the DMP
  Serial.println(F("Initializing DMP..."));
  devStatus = mpu.dmpInitialize();

  // supply your own gyro offsets here, scaled for min sensitivity
  mpu.setXGyroOffset(51);
  mpu.setYGyroOffset(8);
  mpu.setZGyroOffset(21);
  mpu.setXAccelOffset(1150);
  mpu.setYAccelOffset(-50);
  mpu.setZAccelOffset(1060);
  // make sure it worked (returns 0 if so)
  if (devStatus == 0) {
    // Calibration Time: generate offsets and calibrate our MPU6050
    mpu.CalibrateAccel(6);
    mpu.CalibrateGyro(6);
    Serial.println();
    mpu.PrintActiveOffsets();
    // turn on the DMP, now that it's ready
    Serial.println(F("Enabling DMP..."));
    mpu.setDMPEnabled(true);

    // enable Arduino interrupt detection
    Serial.print(F("Enabling interrupt detection (Arduino external interrupt "));
    Serial.print(digitalPinToInterrupt(INTERRUPT_PIN));
    Serial.println(F(")..."));
    attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
    mpuIntStatus = mpu.getIntStatus();

    // set our DMP Ready flag so the main loop() function knows it's okay to use it
    Serial.println(F("DMP ready! Waiting for first interrupt..."));
    dmpReady = true;

    // get expected DMP packet size for later comparison
    packetSize = mpu.dmpGetFIFOPacketSize();
  } else {
    // ERROR!
    // 1 = initial memory load failed
    // 2 = DMP configuration updates failed
    // (if it's going to break, usually the code will be 1)
    Serial.print(F("DMP Initialization failed (code "));
    Serial.print(devStatus);
    Serial.println(F(")"));
  }

  // configure LED for output
  pinMode(LED_PIN, OUTPUT);
}

// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
  // if programming failed, don't try to do anything
  if (!dmpReady) return;
  // read a packet from FIFO
  if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer)) { // Get the Latest packet 

#ifdef OUTPUT_READABLE_QUATERNION
    // display quaternion values in easy matrix form: w x y z
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    Serial.print("quat\t");
    Serial.print(q.w);
    Serial.print("\t");
    Serial.print(q.x);
    Serial.print("\t");
    Serial.print(q.y);
    Serial.print("\t");
    Serial.println(q.z);
#endif

#ifdef OUTPUT_READABLE_EULER
    // display Euler angles in degrees
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetEuler(euler, &q);
    Serial.print("euler\t");
    Serial.print(euler[0] * 180 / M_PI);
    Serial.print("\t");
    Serial.print(euler[1] * 180 / M_PI);
    Serial.print("\t");
    Serial.println(euler[2] * 180 / M_PI);
#endif

#ifdef OUTPUT_READABLE_YAWPITCHROLL
    // display Euler angles in degrees
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetGravity(&gravity, &q);
    mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
    Serial.print("ypr\t");
    Serial.print(ypr[0] * 180 / M_PI);
    Serial.print("\t");
    Serial.print(ypr[1] * 180 / M_PI);
    Serial.print("\t");
    Serial.print(ypr[2] * 180 / M_PI);
    /*
      mpu.dmpGetAccel(&aa, fifoBuffer);
      Serial.print("\tRaw Accl XYZ\t");
      Serial.print(aa.x);
      Serial.print("\t");
      Serial.print(aa.y);
      Serial.print("\t");
      Serial.print(aa.z);
      mpu.dmpGetGyro(&gy, fifoBuffer);
      Serial.print("\tRaw Gyro XYZ\t");
      Serial.print(gy.x);
      Serial.print("\t");
      Serial.print(gy.y);
      Serial.print("\t");
      Serial.print(gy.z);
    */
    Serial.println();

#endif

#ifdef OUTPUT_READABLE_REALACCEL
    // display real acceleration, adjusted to remove gravity
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetAccel(&aa, fifoBuffer);
    mpu.dmpGetGravity(&gravity, &q);
    mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
    Serial.print("areal\t");
    Serial.print(aaReal.x);
    Serial.print("\t");
    Serial.print(aaReal.y);
    Serial.print("\t");
    Serial.println(aaReal.z);
#endif

#ifdef OUTPUT_READABLE_WORLDACCEL
    // display initial world-frame acceleration, adjusted to remove gravity
    // and rotated based on known orientation from quaternion
    mpu.dmpGetQuaternion(&q, fifoBuffer);
    mpu.dmpGetAccel(&aa, fifoBuffer);
    mpu.dmpGetGravity(&gravity, &q);
    mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
    mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
    Serial.print("aworld\t");
    Serial.print(aaWorld.x);
    Serial.print("\t");
    Serial.print(aaWorld.y);
    Serial.print("\t");
    Serial.println(aaWorld.z);
#endif

#ifdef OUTPUT_TEAPOT
    // display quaternion values in InvenSense Teapot demo format:
    teapotPacket[2] = fifoBuffer[0];
    teapotPacket[3] = fifoBuffer[1];
    teapotPacket[4] = fifoBuffer[4];
    teapotPacket[5] = fifoBuffer[5];
    teapotPacket[6] = fifoBuffer[8];
    teapotPacket[7] = fifoBuffer[9];
    teapotPacket[8] = fifoBuffer[12];
    teapotPacket[9] = fifoBuffer[13];
    Serial.write(teapotPacket, 14);
    teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif

    // blink LED to indicate activity
    blinkState = !blinkState;
    digitalWrite(LED_PIN, blinkState);
  }
}

Processing程式碼

// I2C device class (I2Cdev) demonstration Processing sketch for MPU6050 DMP output
// 6/20/2012 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//     2012-06-20 - initial release
//     2016-10-28 - Changed to bi-plane 3d model based on tutorial at  
//                  https://forum.processing.org/two/discussion/24350/display-obj-file-in-3d
//                  https://opengameart.org/content/low-poly-biplane

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

import processing.serial.*;
//import processing.opengl.*;
import toxi.geom.*;
import toxi.processing.*;

// NOTE: requires ToxicLibs to be installed in order to run properly.
// 1. Download from http://toxiclibs.org/downloads
// 2. Extract into [userdir]/Processing/libraries
//    (location may be different on Mac/Linux)
// 3. Run and bask in awesomeness

ToxiclibsSupport gfx;

Serial port;                         // The serial port
char[] teapotPacket = new char[14];  // InvenSense Teapot packet
int serialCount = 0;                 // current packet byte position
int synced = 0;
int interval = 0;

float[] q = new float[4];
Quaternion quat = new Quaternion(1, 0, 0, 0);

float[] gravity = new float[3];
float[] euler = new float[3];
float[] ypr = new float[3];


PShape plane; // 3d model

void setup() {
    // 640x480 px square viewport 
    size(640, 480, P3D);
    gfx = new ToxiclibsSupport(this);

    // setup lights and antialiasing
    lights();
    smooth();
  
    // display serial port list for debugging/clarity
    println(Serial.list());

    // get a specific serial port
    //String portName = "COM12";
    String portName = "COM4";
    // open the serial port
    port = new Serial(this, portName, 115200);
    
    // send single character to trigger DMP init/start
    // (expected by MPU6050_DMP6 example Arduino sketch)
    port.write('r');
        
    // Load Plane object
    // The file must be in the \data folder
    // of the current sketch to load successfully
    plane = loadShape("biplane.obj");  
 
    // apply its texture and set orientation 
    PImage img1=loadImage("diffuse_512.png");
    plane.setTexture(img1);
    plane.scale(30);
    plane.rotateX(PI);
    plane.rotateY(PI+HALF_PI);

      
}

void draw() {
    if (millis() - interval > 1000) {
        // resend single character to trigger DMP init/start
        // in case the MPU is halted/reset while applet is running
        port.write('r');
        interval = millis();
    }

    // black background
    background(0);
   
      
    // translate everything to the middle of the viewport
    pushMatrix();
    translate(width / 2, height / 2);

    // toxiclibs direct angle/axis rotation from quaternion (NO gimbal lock!)
    // (axis order [1, 3, 2] and inversion [-1, +1, +1] is a consequence of
    // different coordinate system orientation assumptions between Processing
    // and InvenSense DMP)
    float[] axis = quat.toAxisAngle();
    rotate(axis[0], -axis[1], axis[3], axis[2]);

    // draw plane
    shape(plane, 0, 0);    
    
    popMatrix();
}

void serialEvent(Serial port) {
    interval = millis();
    while (port.available() > 0) {
        int ch = port.read();

        if (synced == 0 && ch != '$') return;   // initial synchronization - also used to resync/realign if needed
        synced = 1;
        print ((char)ch);

        if ((serialCount == 1 && ch != 2)
            || (serialCount == 12 && ch != '\r')
            || (serialCount == 13 && ch != '\n'))  {
            serialCount = 0;
            synced = 0;
            return;
        }

        if (serialCount > 0 || ch == '$') {
            teapotPacket[serialCount++] = (char)ch;
            if (serialCount == 14) {
                serialCount = 0; // restart packet byte position
                
                // get quaternion from data packet
                q[0] = ((teapotPacket[2] << 8) | teapotPacket[3]) / 16384.0f;
                q[1] = ((teapotPacket[4] << 8) | teapotPacket[5]) / 16384.0f;
                q[2] = ((teapotPacket[6] << 8) | teapotPacket[7]) / 16384.0f;
                q[3] = ((teapotPacket[8] << 8) | teapotPacket[9]) / 16384.0f;
                for (int i = 0; i < 4; i++) if (q[i] >= 2) q[i] = -4 + q[i];
                
                // set our toxilibs quaternion to new data
                quat.set(q[0], q[1], q[2], q[3]);

                
                // below calculations unnecessary for orientation only using toxilibs
                
                // calculate gravity vector
                gravity[0] = 2 * (q[1]*q[3] - q[0]*q[2]);
                gravity[1] = 2 * (q[0]*q[1] + q[2]*q[3]);
                gravity[2] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
    
                // calculate Euler angles
                euler[0] = atan2(2*q[1]*q[2] - 2*q[0]*q[3], 2*q[0]*q[0] + 2*q[1]*q[1] - 1);
                euler[1] = -asin(2*q[1]*q[3] + 2*q[0]*q[2]);
                euler[2] = atan2(2*q[2]*q[3] - 2*q[0]*q[1], 2*q[0]*q[0] + 2*q[3]*q[3] - 1);
    
                // calculate yaw/pitch/roll angles
                ypr[0] = atan2(2*q[1]*q[2] - 2*q[0]*q[3], 2*q[0]*q[0] + 2*q[1]*q[1] - 1);
                ypr[1] = atan(gravity[0] / sqrt(gravity[1]*gravity[1] + gravity[2]*gravity[2]));
                ypr[2] = atan(gravity[1] / sqrt(gravity[0]*gravity[0] + gravity[2]*gravity[2]));
    
                // output various components for debugging
                println("q:\t" + round(q[0]*100.0f)/100.0f + "\t" + round(q[1]*100.0f)/100.0f + "\t" + round(q[2]*100.0f)/100.0f + "\t" + round(q[3]*100.0f)/100.0f);
                println("euler:\t" + euler[0]*180.0f/PI + "\t" + euler[1]*180.0f/PI + "\t" + euler[2]*180.0f/PI);
                println("ypr:\t" + ypr[0]*180.0f/PI + "\t" + ypr[1]*180.0f/PI + "\t" + ypr[2]*180.0f/PI);
                
            }
        }
    }
}

方塊圖


成果展示




This site was last updated June 05, 2023.